DISTRIBUCIONES ACUMULATIVAS DE LA TASA DE LLUVIAS CON TIEMPO DE INTEGRACIÓN DE 1-MINUTO EN VENEZUELA

  • Leidy Marian Rujano Molina
  • Nelson Pérez García Alexander Pérez García
  • Tomás Nariño González

Resumen

De acuerdo a exigencias de la ITU (International Telecommunication Union), para que los valores de la tasa de lluvias puedan ser utilizados en los modelos de atenuación por lluvias, es necesario que dichos valores sean el resultado de mediciones de la referida tasa con tiempo de integración (tiempo de muestreo) de 1-minuto. En este trabajo, dado que en el caso específico de Venezuela se cuenta con mediciones de la tasa de lluvias con tiempo de integración de 1-mes, se implementan los modelos Rice-Holmberg, Ito-Hosoya y Moupfouma y Martin Refinado, para convertir esas distribuciones acumulativas disponibles de la tasa de lluvias a sus equivalentes con tiempo de integración de 1-minuto. La evaluación del desempeño de los referidos modelos, realizada en términos del valor RMSE (Root Mean Square Error), muestra un mejor comportamiento para el modelo Ito-Hosoya.

Citas

[1] Institute of Electrical and Electronics Engineers (IEEE) (2012). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE 802.11ad-2012. New York, NY, USA.
[2] Institute of Electrical and Electronics Engineers (IEEE) (2016). IEEE Standard for High Data Rate Wireless Multi-Media Networks, IEEE Std 802.15.3-2016 (Revision of IEEE Std 802.15.3-2003). New York, NY, USA.
[3] Ippolito L.J. (2008). Satellite Communications Systems Engineering - Atmospheric Effects, Satellite Link Design and System Performance. John Wiley & Sons.
[4] Perez N.A. (2003). Modelamento de Efeitos de Atenuação por Chuvas em Enlaces Terrestres Ponto-a-ponto e Ponto-multiponto. Tese de Doutorado, Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
[5] Selamat S., Marzuki A.S.M., Azlan A.T.M., Naemat A., Khalil K. (2014). 60-min to 1-min Rainfall Rate Conversion using East Malaysia Data. 2014 IEEE Student Conference on Research and Development (SCOReD), Penang, Malaysia.
[6] International Telecommunication Union (ITU) (2015). ITU-R Recommendation P.530-16: Propagation Data and Prediction Methods required for the Design of Terrestrial Line-of-sight Systems. Geneva, Switzerland.
[7] Capsoni C., Luini L., Paraboni A., Riva C., Martellucci A. (2009). A New Prediction Model of Rain Attenuation that Separately Accounts for Stratiform and Convective Rain. IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1 (Pp. 196-203).
[8] Lavergnat J., Gole P. (1988). A Stochastic Raindrop Time Distribution Model. AMS (American Meteorological Society) Journal of Applied Meteorology, Vol. 37 (Pp. 805-818).
[9] Moupfouma F., Martin L. (1993). Point Rainfall Rate Cumulative Distribution Function Valid at Various Locations. Electronic Letters, Vol. 29, No. 17 (Pp. 1503-1505).
[10] Moupfouma F. Martin L. (1995). Modelling of the Rainfall Rate Cumulative Distribution for the Design of Satellite and Terrestrial Communication Systems. International Journal of Satellite Communications and Networking, Vol.13, No. 2 (Pp. 105-115).
[11] Rice P., Holmberg N. (1973). Cumulative Time Statistics of Surface-Point Rainfall Rates. IEEE Transactions on Communications, Vol. COM-21, No. 10 (Pp. 1131-1136).
[12] Chebil J., Rahman T.A. (1999). Development of 1 min Rain Rate Contour Maps for Microwave Applications in Malaysia Peninsula. Electronics Letters, Vol. 35, No. 20 (Pp. 1772-1774).
[13] International Telecommunication Union (ITU) (2012). ITU-R Recommendation P.837-6: Characteristics of Precipitation for Propagation Modelling. Geneva, Switzerland.
[14] Ito C., Hosoya Y. (2002). The Thunderstorm Ratio as a Regional Climatic Parameter: Its Effects on Different-integration-time Rain Rate Conversion, Rain Attenuation, Site-diversity and Rain Depolarization. International Union of Radio Science - XXVIIth General Assembly (URSI GA 2002), Commission F, pp. 1-4, Maastricht, Netherlands.
[15] Lee J.H., Kim Y.S., Kim J.H., Choi Y.S. (2000). Empirical Conversion Process of Rain Rate Distribution for Various Integration Time. 2000 Asia-Pacific Microwave Conference, Sidney, Australia.
[16] Matricciani E.A. (2011). Mathematical Theory of De-integrating Long-time Integrated Rainfall and Its Application for Predicting 1-min Rain Rate Statistics. International Journal of Satellite Communications and Networking, Vol. 29, No. 6 (Pp. 501-530).
[17] Jung M.W., Han I.T., Choi M.Y., Lee J.H., Pack J.K. (2008). Empirical Prediction Models of 1-min Rain Rate Distribution or Various Integration Time. Journal of the Korean Institute of Electromagnetic Engineering and Science, Vol. 8, No, 2 (Pp. 84-89).
[18] Emiliani L.D., Luini L., Capsoni C. (2009). Analysis and Parameterization of Methodologies for the Conversion of Rain-Rate Cumulative Distributions from Various Integration Times to One Minute. IEEE Antennas and Propagation Magazine, Vol. 51, No. 3 (Pp. 70-84).
[19] Emilian L., Luini L. (2010). Evaluation of Models for the Conversion of T-min Rainfall Distributions to an Equivalent One-minute Distribution to be used in Colombia. Revista Facultad de Ingeniería, Universidad de Antioquia, Vol. 56 (Pp. 99-100).
[20] Hosking J.R., Wallis J.R. (1987). Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics, Vol. 29, No. 3 (Pp. 339-349).
[21] Ojo J.S., Adenugba A.K., Adediji A.T. (2016). Dynamical Model for Deriving 1-Min Rain Rate from Various Integration Times in a Tropical Region. Journal of Telecommunications System & Management, Vol. 5, No. 1 (Pp. 1-5).
[22] Li L., Zhu Y., Zha B (1998). Rain Rate Distributions for China from Hourly Rain Gauge Data. Radio Science, Vol. 33, No. 3 (Pp. 553-564).
[23] Ojo J.S., Owolawi P.A. (2014). Development of One-minute Rain-rate and Rain-attenuation Contour Maps for Satellite Propagation System Planning in a Subtropical Country: South Africa. Advances in Space Research, Vol. 54, No. 8 (Pp. 1487-1501).
[24] Emiliani L.D., Agudelo J., Gutierrez E., Fradique-Mendez C. (2004). Development of Rain-attenuation and Rain-rate Maps for Satellite System Design in the Ku and Ka bands in Colombia. IEEE Antennas and Propagation Magazine, Vol. 46, No. 6 (Pp. 54-68).
[25] Salonen E.T., Poiares J.P.V. (1997). A New Global Rainfall Rate Model. 10th International Conference on Antennas and Propagation, Edinburgh, Scotland.
[26] Begum S., Otung E. (2008). Characterization of Rain Attenuation in Bangladesh and Application to Satellite Link Design. Radio Science, Vol. 43, No. 1 (Pp. 1-16).
[27] Mandeep J.S., Hassan I.S. (2008). Performances of existing Rain Rate Models in Equatorial Region. Journal of Geophysical Research, Vol. 113, No. D11 (Pp. 1-7).
[28] Pérez-García N.A., Pinto A.D., Torres J.M., Rengel J.E., Rujano L.M., Robles-Camargo N., Donoso Y. (2017). Improved ITU-R Model for Digital Terrestrial Television Propagation Path Loss Prediction. Electronics Letters, Vol. 53, No. 13, pp. 832-834.
[29] Calu C., Stephen B.U.A., Uko M.C. (2017). Empirical Valuation of Multi-Parameters and RMSE-Based Tuning Approaches for the Basic and Extended Stanford University Interim (SUI) Propagation Models. Mathematical and Software Engineering, Vol. 3, No. 1 (Pp. 1-12).
Publicado
2017-01-06
Cómo citar
Rujano Molina, L., Pérez García, N. P. G., & Nariño González, T. (2017). DISTRIBUCIONES ACUMULATIVAS DE LA TASA DE LLUVIAS CON TIEMPO DE INTEGRACIÓN DE 1-MINUTO EN VENEZUELA. Ingeniería Al Día, 3(1), 24 - 44. Recuperado a partir de http://revista.unisinu.edu.co/revista/index.php/ingenieriaaldia/article/view/83

##plugins.generic.recommendByAuthor.heading##