UNA REVISIÓN DE MODELOS DE PROPAGACIÓN PARA LA PLANIFICACIÓN Y DIMENSIONAMIENTO DE SISTEMAS DE COMUNICACIONES MÓVILES

  • Katia E. Tirado S
  • John J. Muñoz S
Palabras clave: Sistemas inalámbricos celulares, Planificación y dimensionamiento, Modelos de propagación, Comparación

Resumen

En el proceso de planificación y dimensionamiento (PyD) de sistemas de comunicaciones móviles, los modelos de propagación constituyen una parte muy importante, ya que los mismos permiten predecir las pérdidas de propagación o el nivel de señal recibido en dichos sistemas, lo cual a su vez permite estimar, por ejemplo, la cobertura de los mismos. En este artículo, se hace una revisión bibliográfica acerca de diversos modelos de propagación que pueden ser utilizados para el proceso de PyD, concretamente, para sistemas inalámbricos celulares. La revisión abarca los modelos más típicamente utilizados para los ambientes en los cuales se implementan los referidos sistemas. La investigación también incorpora algunas comparaciones que la literatura reporta acerca del desempeño de algunos de esos modelos en la estimativa de las pérdidas de propagación o del nivel de señal recibido. Esas comparaciones muestran que el referido desempeño es particular de cada caso de estudio considerado.

Citas

[1] Arnau J., Atzeni I. and Kountouris M. (2016). Impact of LOS/NLOS Propagation and
Path Loss in Ultra-dense Cellular Networks. 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia.
[2] Chen J., et al (2014). Measurement-Based LOS/NLOS Channel Modeling for Hot-Spot
Urban Scenarios in MTS Networks. International Journal of Antennas and Propagation,
Vol. 2014 (Pp. 1-12).
[3] Almers P., et al (2007). Survey of Channel and Radio Propagation Models for Wireless
MIMO Systems. EURASIP Journal on Wireless Communications and Networking,Vol.
2007 (Pp. 1-19).
Chebil J., Lwas A.K., Islam M.R. and Zyoud A.H. (2011). Comparison of Empirical
Propagation Path Loss Models for Mobile Communications in the Suburban Area of
91
Revista Ingeniería al Día. ISSN: 2389 - 7309. Volumen
2 Edición No 2. Julio
– Diciembre de 2016
Kuala Lumpur. 4th International Conference on Mechatronics (ICOM), Kuala Lumpur,
Malaysia.
[5] Pérez N.A. (2000). Cálculo de Cobertura de Sistemas WLL e LMDS. Dissertação de
Mestrado, Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro
(PUC/Rio), Rio de Janeiro, Brasil.
[6] Pérez N.A. (2003). Modelamento de Efeitos de Atenuação por Chuvas em Enlaces
Terrestres Ponto-a-ponto e Ponto-multiponto. Tese de Doutorado, Departamento de
Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
[7] Crane R.K. (1996). Electromagnetic Wave Propagation through Rain. WileyInterscience.
[8] Levis C., Johnson J.T. and Teixeira F.L. (2010). Radiowave Propagation: Physics and
Applications. John Wiley & Sons.
[9] Jun P. (2014). Research of Radio Channel Characteristics in Mobile Communication
Technology. 7th International Conference on Intelligent Computation Technology and
Automation (ICICTA), Changsha, China.
[10] Mullet G. (2005). Wireless Telecommunications Systems and Networks. Cengage
Learning.
[11] Panic S., Stefanovic M., Anastasov J. and Spalevic P. (2013). Fading and Interference
Mitigation in Wireless Communications. CRC Press.
[12] Rappaport, T.S. (2002). Wireless Communications: Principles and Practice. 2nd
Edition, Prentice Hall.
[13] Misra I.S. (2010). Wireless Communications and Networks: 3G and Beyond. McGraw
Hill
[14] Saunder S.R. and Zavala A.A. (2007). Antennas and Propagation for Wireless
Communication Systems. 2nd Edition, John Wiley & Sons.
[15] Parsons J.D. (2000). The Mobile Radio Propagation Channel. 2nd Edition, John Wiley
& Sons.
[16] Maclean J. and Wu G. (1993). Radiowave Propagation over Ground. Springer.
[17] ITU (International Telecommunications Union) (2013). Recommendation ITU-R P.526-
13: Propagation by Difracction. Ginebra, Suiza
[18] Alulema J.A. (2002). Diseño de una Red de Microondas entre Quito - Guayaquil,
considerando Análisis de Interferencia y Planeación del Espectro Electromagnético.
92
Revista Ingeniería al Día. ISSN: 2389 - 7309. Volumen
2 Edición No 2. Julio
– Diciembre de 2016
Proyecto de Grado, Ingeniero en Electrónica y Telecomunicaciones, Escuela
Politécnica Nacional, Quito, Ecuador
[19] Epstein J. and Peterson D. (1953). An Experimental Study of Wave Propagation at 850
MC. Proceedings of the IRE, Vol. 41, No. 5 (Pp. 595-611).
[20] Bullington K. (1977). Radio Propagation for Vehicular Communications. IEEE
Transactions on Vehicular Technology, Vol. VT-26, No. 4 (Pp. 295-303).
[21] Deygout J. (1966). Multiple Knife-edge Diffraction of Microwaves. IEEE Transactions
on Antennas and Propagation, Vol. AP-14, No. 4 (Pp. 480-489).
[22] De Asis M.S. (1971). A Simplified Solution to the Problem of Multiple Diffraction over
Rounded Obstacles. IEEE Transactions on Antennas and Propagation, Vol. 19, No. 2
(Pp. 292-295)
[23] Goktas P. (2015). Analysis and Implementation of Prediction Models for the Design of
Fixed Terrestrial Point-to-point Systems. Thesis of Master, Electrical and Electronics
Engineering, Bilkent University, Ankara, Turkey.
[24] Giovaneli C.L. (1984). An Analysis of Simplified Solutions for Multiple Knife-edge
Diffraction. IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3 (Pp. 297-
301.
[25] Pérez, N., Herrera, J., Uzcátegui, J.R., Peña J.B. (2012), Modelo de Propagación en
las Ciudades de Mérida (Venezuela) y Cúcuta (Colombia) para redes WLAN, operando
en 2.4 GHz, en Ambientes Exteriores. Revista Universidad, Ciencia y Tecnología, Vol.
16, No. 62 (Pp. 54-64).
[26] Goldsmith A. (2005). Wireless Communications. Cambridge University Press.
[27] Hata M. (1980). Empirical Formula for Propagation Loss in Land Mobile Radioservices.
IEEE Transactions Vehicular Technology, VT-29, No. 3 (Pp. 317-325).
[28] Alim M.A., Rahman M.M., Hossain M.M. and Al-Nahid A. (2010) Analysis of Large-Scale
Propagation Models for Mobile Communications in Urban Area. International Journal of
Computer Science and Information Security, Vol. 7, No. 1 (Pp. 135-139).
[29] Thomas T. and MV V. (2015). Path loss Determination Using Hata Model and Effect of
Path loss in OFDM. International Journal of Advanced Research in Biology, Ecology,
Science and Technology (IJARBEST), Vol. 1, No. 8 (Pp. 19-25).
[30] Molish A.F. (2011).Wireless Communications. 2
nd Edition, John Wiley & Sons, Ltd.
[31] Mawjoud S. (2013a). Path Loss Propagation Model Prediction for GSM Network
Planning. International Journal of Computer Applications, Vol. 84, No. 7 (Pp. 30-33).
[32] Young W.R. (1952). Comparison of Mobile Radio Transmission at 150, 450, 900 & 3700
mc" [mHz]. Bell System Technical Journal, Vol 31, No. 6 (Pp. 1068-1085).
[33] Seybold J.S. (2005). Introduction to RF Propagation. John Wiley & Sons.
[34] Lee W.C.Y. (2006). Mobile Cellular Telecommunications Systems. Third Edition,
McGraw Hill.
[35] Garg V. K. and Wilkes J.E. (1996). Wireless and Personal Communications Systems.
Prentice Hall PTR.
[36] Ramanathan P. (2014). Propagation Path-Loss Prediction Model for 4G Mobile
Communication Systems. International Journal of Computer Science and Information
Technologies, Vol. 5, No. 1 (Pp. 410-413).
[37] Kouyoumjian R. and Prabhakar P. (1974). A Unifm Geometrical Theory of Diffraction
for na Edge in a Perfectly Conducting Surface. Proceedings of the IEEE, Vol. 62, No.
11 (Pp. 1448-1461).
[38] Walfisch J. and Bertoni H.L. (1988). A Theoretical Model of UHF Propagation in Urban
Environments. IEEE Transactions on Antennas and Propagation, Vol. 36, No. 12 (Pp.
1788-1796).
[39] Cátedra M.F. and Pérez-Arriaga J. (1999). Cell Planning for Wireless Communications.
Artech House, Inc., Norwood.
[40] Pedraza L.F., Ballestero D.M. y Vaca H. (2010). Estudio de Modelos de Propagación
en el Entorno de la Universidad Distrital Francisco José de Caldas. Revista Visión
Electrónica, No. 2 (Pp. 77-87).
[41] Casaravilla J.M., Dutra G.A., Pignataro N. and Acuña J.E. (2009). Propagation Model
for Small Urban Macro Cells. IEEE Transactions on Vehicular Technology, Vol. 58, No.
7 (Pp. 3094-3101).
[42] Erceg V., et al. (1999). An Empirically Based Path Loss Model for Wireless Channels in
Suburban Environments. IEEE Journal on Selected Areas in Communications, Vol. 17,
No. 7 (Pp. 1205-1211).
[43] Erceg. V., et al. (2001). Channel Models for Fixed Wireless Applications
IEEE802.16.3c-01/29r4, IEEE 802.16 Broadband Wireless Access Working Group.
Documento en línea. Disponible en http://www.ieee802.org/16/tg3/contrib/802163c -
01_29r4.pdf (Consulta: abril 2016).
[44] XIRIO Online (2016). Stanford University Interim. Documento en línea. Disponible en
https://www.xirio-online.com/help/es/sui.html (Consulta: abril 2016).
[45] Chebil J., Lawas A.K. and Rafiqul-Islam M.D. (2013). Comparison between Measured
and Predicted Path Loss for Mobile Communication in Malaysia. World Applied
Sciences Journal 21 (Mathematical Applications in Engineering), (Pp. 123-128).
[46] ECC (Electronic Communication Committee) (2006). The Analysis of the Coexistence
of Point-to-multipoint FWS Cells in the 3.4 - 3.8 GHz Band. ECC REPORT 33 - Revised.
[47] Alam M.D. and Huque-Khan M.R. (2013). Comparative Study of Path Loss Models of
WiMAX at 2.5 GHz Frequency Band. International Journal of Future Generation
Communication and Networking, Vol. 6, No. 2 (Pp. 11-23).
[48] Milanovic J., Rimac-Drlje S. and Bejuk K. (2007). Comparison of Propagation Models
Accuracy for WiMAX on 3.5 GHz. 14th IEEE International Conference on Electronics,
Circuits and Systems (ICECS 2007), Marrakech, Morocco.
[49] Kumar P., Patil B. and Ram S. (2015). Selection of Radio Propagation Model for Long
Term Evolution (LTE) Network. International Journal of Engineering Research and
General Science, Vol. 3, No. 1 (Pp. 373-379).
[50] Mollel M.S. and Kisangiri M. (2014). Comparison of Empirical Propagation Path Loss
Models for Mobile Communication. Computer Engineering and Intelligent Systems, Vol.
5, No. 9 (Pp. 1-10).
[51] Mawjoud S.A. (2013b). Comparison of Propagation Model Accuracy for Long Term
Evolution (LTE) Cellular Network. International Journal of Computer Applications, Vol.
79, No. 11 (Pp. 41-45).
Publicado
2016-07-21
Cómo citar
Tirado S, K., & Muñoz S, J. (2016). UNA REVISIÓN DE MODELOS DE PROPAGACIÓN PARA LA PLANIFICACIÓN Y DIMENSIONAMIENTO DE SISTEMAS DE COMUNICACIONES MÓVILES. Ingeniería Al Día, 2(2), 72 - 94. Recuperado a partir de http://revista.unisinu.edu.co/revista/index.php/ingenieriaaldia/article/view/32