UNA REVISIÓN DE LA LITERATURA SOBRE DATOS ENLAZADOS

A REVIEW OF THE LITERATURE ABOUT LINKED DATA

Palabras clave: Datos Enlazados, lógica dialéctica, aprendizaje ontológico, recomendador de información, aprendizaje automático, generación de datos

Resumen

En este artículo, se presenta una revisión del estado de arte sobre los Datos Enlazados en las siguientes dimensiones: trabajos que usen los datos enlazados para la recomendación de información basada en lógica descriptiva/dialéctica, trabajos que aprovechen las fuentes de datos enlazados para la generación de modelos de Aprendizaje Automático, trabajos sobre la generación de datos artificiales con información proveniente de fuentes de datos enlazados, y por último, trabajos sobre el aprendizaje de ontología explotando el conocimiento almacenados en los datos enlazados. Cada una de estas dimensiones representa retos de investigación en el ámbito de los datos enlazados.

Citas

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific American, vol. 284, no. 5, pp. 28-37, May 2001. [Online]. Available: https://www.scientificamerican.com/article/the-semantic-web/ [Accessed: June 20, 2018].
[2] T. Berners-Lee, et al., “Tabulator: Exploring and Analyzing Linked Data on the Semantic Web”, in 3rd International Semantic Web User Interaction Workshop (SWUI 2006), Nov. 2006, pp. 1-16. Online]. Available: https://www.cs.columbia.edu/~chilton/my_publications/BernersLeeTabulator2006.pdf [Accessed: June 20, 2018].
[3] T. Rodríguez, R. Dos Santos, y J. Aguilar, “Metodología para el desarrollo de Aplicaciones Web utilizando Datos Enlazados”, en 5ta. Conferencia Nacional de Computación, Informática y Sistemas (CONCISA 2017), Oct. 2017, pp. 114-122. [En línea]. Disponible en: http://concisa.net.ve/memorias/CoNCISa2017/CoNCISa2017-p114-122.pdf [Consultada: 30 de junio de 2018].
[4] R. Dos Santos, y J. Aguilar, “Enlazado de Datos”, en Introducción a la Minería Semántica, J. Aguilar, Ed. San Cristóbal: Fondo Editorial Universidad Nacional Experimental del Táchira (FEUNET), 2018, pp. 177-216.
[5] T. Berners-Lee, “Linked Data”, 2006. [Online]. Available: https://www.w3.org/DesignIssues/LinkedData.html [Accessed: July 10, 2018]. [6] P.V. Torres-Carrión, et al., “Methodology for Systematic Literature Review Applied to Engineering and Education”, in 9th IEEE Global Engineering Education Conference (EDUCON 2018), April 2018, pp. 1364-1373. doi: https://doi.org/10.1109/EDUCON.2018.8363388
[7] A. Zouaq, J. Jovanovic, S. Joksimovíc, and D. Gašević, “Linked data for learning analytics: Potentials and challenges. Handbook of Learning Analytics”, 2017. [Online]. Available: https://solaresearch.org/wp-content/uploads/2017/05/hla17.pdf [Accessed: July 23, 2018]. [8] J. Aguilar, P. Valdiviezo-Díaz, and G. Riofrio “A General Framework for Intelligent Recommender Systems”, Applied Computing and Informatics, vol. 13, no. 2, pp. 147-160, July 2017. doi: https://doi.org/10.1016/j.aci.2016.08.002 [9] F.J. Pelletier, G. Sutcliffe, and A.P. Hazen, “Automated Reasoning for the Dialetheic Logic RM3”, in 30th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2017), May 2017, pp. 110-115. [Online]. Available: https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/download/15415/14926 [Accessed: July 23, 2018].
[10] P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press, 2012.
[11] Y. Pei, and O. Zaıane, A Synthetic Data Generator for Clustering and Outlier Analysis. Technical Report, Department of Computing Science, University of Alberta, 2006. doi: https://doi.org/10.7939/R3B23S
[12] J. Lehmann, and J. Volker, “An Introduction to Ontology Learning”, in Perspectives on Ontology Learning, J. Lehmann, and J. Volker. Ed. Amsterdam: IOS Press, 2014, pp. ix-xvi. [13] C. Musto, et al., “Linked Open Data-enabled Strategies for Top-N Recommendations”. CBRecSys 2014, Oct. 2014, pp. 49-56. [Online]. Available: http://ceur-ws.org/Vol-1245/cbrecsys2014-proceedings.pdf [Accessed: Aug. 06, 2018]. [14] V.C. Ostuni, et al., “A Linked Data Recommender System Using a Neighborhood-based Graph Kernel”, in E-Commerce and Web Technologies, M. Hepp, and Y. Hoffner. Ed. Cham, Switzerland; Springer, 2014, pp. 89-100.
[15] B. Heitmann, and C. Hayes, “Using Linked Data to Build Open, Collaborative Recommender Systems”, in 2010 AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, March 2010, pp. 1-6. [Online]. Available: https://www.researchgate.net/publication/221250862_Using_Linked_Data_to_Build_Open_Collaborative_Recommender_Systems [Accessed: Sep. 30, 2018]. [16] S. He, et al., “Question Answering over Linked Data Using First-order Logic”, in 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Oct. 2014, pp. 1092-1103. doi: https://doi.org/10.3115/v1/D14-1116
[17] X. Wilcke, P. Bloem, and V. De Boer, “The Knowledge Graph as the Default Data Model for Learning on Heterogeneous Knowledge”, Data Science. vol. 1, no 1-2, pp. 39-57, 2017. doi: https://doi.org/10.3233/DS-170007
[18] D. Teja-Santosh, and B. Vishnu-Vardhan, “Obtaining Feature- and Sentiment-Based Linked Instance RDF Data from Unstructured Reviews using Ontology-Based Machine Learning”, International Journal of Technology, vol. 6, no. 2, pp. 198-206, April 2015. doi: https://doi.org/10.14716/ijtech.v6i2.555
[19] L. Bühmann, et al., “DL-Learner Structured Machine Learning on Semantic Web Data”, in The Web Conference 2018, April 2018, pp. 467-471. doi: https://doi.org/10.1145/3184558.3186235 [20] L. Bühmann, J. Lehmann, and P. Westphal, “DL-Learner - A Framework for Inductive Learning on the Semantic Web”, Journal of Web Semantics, vol. 39, pp. 15-24, Aug. 2016. doi: https://doi.org/10.1016/j.websem.2016.06.001 [21] P. Ristoski, and H. Paulheim, “RDF2Vec: RDF Graph Embeddings for Data Mining”, in The Semantic Web – ISWC 2016, P. Groth, et al. Ed. Cham, Switzerland: Springer, 2016, pp. 498-514. [22] M. Cochez, et al., “Biased Graph Walks for RDF Graph Embeddings”, in 7th International Conference on Web Intelligence, Mining and Semantics (WIMS 2017), June 2017, pp. 1-12. doi: https://doi.org/10.1145/3102254.3102279
[23] M. Avvenuti, et al., "GSP (Geo-Semantic-Parsing): Geoparsing and Geotagging with Machine Learning on Top of Linked Data", in The Semantic Web, A. Gangemi, et al. Ed. Cham, Switzerland: Springer, 2018, pp. 17-32. [24] A. Ferrara, et al., “Benchmarking Matching Applications on the Semantic Web”, in The Semanic Web: Research and Applications, G. Antoniou, et al. Ed. Berlin: Springer, 2011, pp. 108-122. [25] I. Fundulaki, et al., D2.2.2 Data Generator. Technical Report, Linked Data Benchmark Council (LDBC), 2013. [Online]. Available: http://ldbcouncil.org/sites/default/files/LDBC_D2.2.2.pdf [Accessed: Oct. 28, 2018]. [26] V. Kotsev, et al., “Benchmarking RDF Query Engines: The LDBC Semantic Publishing Benchmark”, in Workshop on Benchmarking Linked Data (BLINK 2016), Oct. 2016, pp. 1-16. [Online]. Available: http://ceur-ws.org/Vol-1700/paper-01.pdf [Accessed: Nov. 06, 2018]. [27] T. Saveta, et al., “Pushing the Limits of Instance Matching Systems: A Semantics-Aware Benchmark for Linked Data”, in 24th International Conference on World Wide Web (WWW 2015), May 2015, pp. 105-106. doi: https://doi.org/10.1145/2740908.2742729 [28] O. Erling, et al., “The LDBC Social Network Benchmark: Interactive Workload”, in 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD 2015), May-June 2015. pp. 619-630. doi: https://doi.org/10.1145/2723372.2742786 [29] T. Saveta, et al., “LANCE: Piercing to the Heart of Instance Matching Tools”, in The Semantic Web - ISWC 2015, M. Arenas, et al. Ed. Cham, Switzerland: Springer, 2015, pp. 375-391. [30] T. Saveta, et al., “LANCE: A Generic Benchmark Generator for Linked Data”, 2015 [Online]. Available: http://ceur-ws.org/Vol-1486/paper_43.pdf [Accessed: Dec. 12, 2018]. [31] A.K. Joshi, P. Hitzler, and G. Dong, “LinkGen: Multipurpose Linked Data Generator”, in The Semantic Web – ISWC 2016, P. Groth, et al. Ed. Cham, Switzerland: Springer, 2016, pp. 113-121.
[32] A. Dimou, et al., “Automated Metadata Generation for Linked Data Generation and Publishing Workflows”, in 9th Workshop on Linked Data on the Web (LDOW 2016), April 2016, pp. 1-10. [Online]. Available: http://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_04.pdf [Accessed: Dec. 19, 2018]. [33] N. Piedra, et al., “Una Aproximación Basada en Linked Data para la Detección de Potenciales Redes de Colaboración Científica a partir de la Anotación Semántica de Producción Científica: Piloto Aplicado con Producción Científica de Investigadores Ecuatorianos”. Maskana, vol. 5 (Número Especial), 2015. [34] A. Alba, et al., “Multi-lingual Concept Extraction with Linked Data and Human-in-the-Loop”, in 9th International Conference on Knowledge Capture (K-CAP 2017), Dec. 2017, pp. 1-8. doi: https://doi.org/10.1145/3148011.3148021 [35] A. Coden, et al., “Spot the Drug! An Unsupervised Pattern Matching Method to Extract Drug Names from Very Large Clinical Corpora”, in 2nd International Conference on Healthcare Informatics, Imaging and Systems Biology (HISB 2012), Sep. 2012, pp. 33-39. https://doi.org/10.1109/HISB.2012.16 [36] S. Bischof, et al., “Collecting, Integrating, Enriching and Republishing Open City Data as Linked Data”, in The Semantic Web - ISWC 2015, M. Arenas, et al. Ed. Cham, Switzerland: Springer, 2015, pp. 57-75. [37] N. Li, et al., “Applying Combinatorial Test Data Generation to Big Data Applications”, in 31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016), Sep. 2016, pp. 637-647. https://doi.org/10.1145/2970276.2970325
Publicado
2019-01-14
Cómo citar
Dos Santos Guillén, R., Aguilar Castro, J., & Rodríguez de Paredes, T. (2019). UNA REVISIÓN DE LA LITERATURA SOBRE DATOS ENLAZADOS. Ingeniería Al Día, 5(1), 54 - 82. Recuperado a partir de http://revista.unisinu.edu.co/revista/index.php/ingenieriaaldia/article/view/303

##plugins.generic.recommendByAuthor.heading##